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SHOCK-TUBE GAS TEMPERATURE MEASUREMENTS BY INFRARED 

MONOCHROMATIC RADIATION PYROMETRY 

by Milton R. Lauver, J e r r y  L. H a l l ,  and Frank E. Bel les  

Lewis Research Center 

G a s  temperature h i s t o r i e s  i n  a shock tube were determined by an inf ra red  
monochromatic r a d i a t i o n  pyrometer technique. A 10 percent carbon dioxide- 
argon mixture was s tudied with both incident  and r e f l e c t e d  shocks. Measured 
temperatures of llOOo t o  3300' K immediately behind the  incident  shocks were 
i n  good agreement with the  temperatures calculated by one-dimensional wave 
theory from the  shock veloci ty .  
hind r e f l e c t e d  shocks were i n  good agreement f o r  short  r e f l e c t i o n  dis tances  
w i t h  those ca lcu la ted  by one-dimensional wave theory from the  incident  shock 
veloci ty .  The r e l a t i o n  between the  ve loc i ty  a t tenuat ions and the  temperature 
and pressure r i s e s  behind incident  shocks w a s  i n  general  agreement with strong 
shock theory. The change i n  gas temperature with time behind a r e f l e c t e d  shock 
w a s  adequately ca lcu la ted  from the  d issoc ia t ion  r a t e  of carbon dioxide and the  
measured pressure h i s t o r y  of the  gas mixture. 

Measured temperatures of 1900' t o  3550' K be- 

INTRODUCTION 

The shock tube has one of i t s  prime appl icat ions i n  the  study of high- 
temperature r a t e  processes i n  gases. Commonly, these processes have a strong 
temperature dependence, and it i s  therefore  necessary t o  know the  temperature 
of t he  experiment qu i te  accurately.  This need can be met n ice ly  so long as in-  
cident shock waves a re  used t o  heat  the  gas, because one-dimensional theory, 
plus the  thermodynamic proper t ies  of the  gas, can be used t o  ca lcu la te  t he  
shocked gas temperature from the  measured ve loc i ty  of t he  wave. Very often, 
however, it i s  convenient or even necessary t o  study processes behind r e f l e c t e d  
shocks, i n  order to t ake  advantage of t he  higher temperatures and pressures  t h a t  
can be produced without unduly s t r a in ing  the  capac i t i e s  of conventional shock 
tubes. I n  t h a t  event, it i s  no longer so c l e a r  t h a t  t h e  temperature can be ca l -  
cu la ted  accurately;  i n t e r a c t i o n s  of t h e  r e f l e c t e d  shock with the  boundary l aye r  
( r e f .  1) and w i t h  t he  pressure gradient  created by a t tenuat ion  of t he  incident  
shock ( r e f .  2 )  introduce complications. 

This problem has been widely recognized, and measurements of r e f l e c t e d  gas 
temperature have recent ly  appeared i n  the  l i t e r a t u r e .  For t h e  most pa r t  they 



were made by t h e  l i n e - r e v e r s a l  method (refs. 3 and 4),  although i n  one case t h e  
r a t e  of a chemical r eac t ion  w a s  used as an ind ica t ion  of temperature ( r e f .  5) .  
The purpose of t h e  present work w a s  t o  study r e f l e c t e d  shock temperatures by a 
more d i r e c t  method based on simultaneous measurements of i n f r a r e d  s p e c t r a l  radi- 
ance and emissivity.  Among t h e  advantages of t h e  i n f r a r e d  method a r e  t h e  f o l -  
lowing: 
emission; ( 2 )  good time r e so lu t ion  i s  possible;  and (3)  a very wide temperature 
range can be covered, a range not l imited by t h e  available b r igh tness  tempera- 
ture of a l i g h t  source as it i s  i n  t h e  r e v e r s a l  method. 

(1) t h e r e  i s  no need t o  introduce sodium sal ts  o r  other  sources of 

This r e p o r t  gives  temperatures measured behind r e f l e c t e d  shocks i n  a gas 
that  i s  t y p i c a l  of mixtures l i k e l y  t o  be used i n  chemical studies,  10 percent 
carbon dioxide-90 percent argon. The temperature range was 1900' t o  3550' K. 
A s e r i e s  of temperatures measured a t  50 t o  200 microseconds a f t e r  t h e  r e f l e c t e d  
wave passed t h e  observation s t a t i o n  were extrapolated t o  zero time and compared 
wi th  values calculated from t h e  ve loc i ty  of t h e  inc iden t  wave. Two d e t a i l e d  
temperature-time records a r e  a l s o  presented; t hese  show t h e  e f f e c t s  of shock 
a t t enua t ion  on both t h e  incident  and t h e  r e f l e c t e d  shock temperature. 

APPARATUS AND EXPERIMENTAL PROCEDURE 

Basis of Emission-Absorption Pyrometry 

The i n f r a r e d  monochromatic r a d i a t i o n  (IMRA) method of gas temperature 
measurement has been described elsewhere ( refs .  6 and 7 ) .  It i s  based on t h e  
f a c t  t h a t  t h e  radiance of a hot  gas depends on t h e  gas temperature and on the 
number of gaseous e n t i t i e s  (molecules, f r e e  r ad ica l s ,  or atoms) emit t ing radi-  
a t ion .  Consequently, by measuring t h e  absolute  i n t e n s i t y  of r a d i a t i o n  (spec- 
t r a l  radiance) and t h e  r e l a t i v e  number dens i ty  of emi t t e r s  ( s p e c t r a l  emissiv- 
i t y ) ,  t h e  temperature of a gas can be calculated.  
t h e  information recorded i n  a shock-tube experiment and t h e  way i n  which it i s  
reduced t o  a temperature measurement. 

Figure 1 shows schematically 

The measurement of s p e c t r a l  emission i s  straightforward. The i n f r a r e d  de- 
t e c t i o n  system response t o  t h e  hot  gas emission V ( f i g .  l) i s  compared with g 

B e f o r e  s h o c k  A f t e r  s h o c k  

F i q u r e  1. - B a s i s  o f  i n f r a r e d  m o n o c h r o m a t i c  r a d i a t i o n  p y r o m e t e r .  
E m i s s i v i t y  E = a b s o r b t i v i t y  = 1 - ( V I V O ) .  R a d i a n c e  N A , g  = 

EC I h - 5 / ( e C 2 ' %  - 1). 
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i t s  response t o  a c a l i b r a t e d  standard i n f r a r e d  source 
absolute  un i t s  by means of c a l i b r a t i o n  fac tors .  The r e s u l t  i s  a spec t r a l  rad i -  
ance NA,g i n  terms of watts steradian-' centimeter-' micron-' a t  a spec i f ic  
wavelength. The e f f e c t  of the  number of emi t te rs  i s  accounted f o r  by absorp- 
t i o n  spectroscopy a t  t he  same wavelength. The reduction i n  radiance of a 
chopped t ransmit ted l i g h t  beam from Vo t o  V v o l t s  determines the  spec t r a l  
absorp t iv i ty  (1 - V/V,), which i s  equal t o  the  spec t r a l  emissivi ty  

Vs and converted t o  

E. 

Kirchoff ' s  r a d i a t i o n  l a w  r e l a t e s  t he  spec t r a l  radiance of a hot g a s - t o  
t h a t  of an i d e a l  blackbody rad ia tor .  Planck's l a w  r e l a t e s  the  spec t r a l  rad i -  
ance of an i d e a l  blackbody r a d i a t o r  t o  i t s  temperature and emissivity.  Combin- 
ing these  l a w s  r e s u l t s  i n  the  following r e l a t i o n  between the  spec t r a l  radiance 
of a gas N i t s  temperature T and i t s  spec t r a l  emissiviky E: 

A, g' g' 

Thus, inasmuch a s  C1 and C2 a r e  the  known Planck r a d i a t i o n  constants and 
N A , ~  and E a r e  measured a t  wavelength A, the  gas temperature Tg may be 
calculated.  

Apparatus f o r  Emission-Absorption gTrometry 

A schematic diagram of the  shock tube and associated equipment i s  given 
i n  f i gu re  2. A constant i n t e n s i t y  of i n f r a r e d  rad ia t ion  from a glower source 

D r i v e r  s e c t i o n  
d i a p h r a g m  

G G l o w e r  
I n t e r n a l  s t a n d a r d  

c 1  8 0 - k c p s  c h o p p e r  
c 2  1. I - k c p s  c h o p p e r  

S o u r c e  

R e c e i v e r  
M o n o c h r o m a t o r  

F i g u r e  2. - S c h e m a t i c  d i a g r a m  of  i n f r a r e d  m o n o c h r o m a t i c  r a d i a t i o n  p y r o m e t e r  
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i s  mechanically chopped a t  80 k i locyc les  per  second and sen t  through t h e  sap- 
phire  windows of t h e  shock tube i n t o  a prism monochromator and a l i qu id -  
nitrogen-cooled indium antimonide detector .  The shocked gases emit rad ia t ion ,  
which passes out of t h e  shock tube i n t o  the  same rad ia t ion  de tec t ion  system. 
I t s  output i s  amplified by a d i r e c t l y  coupled c i r c u i t  providing a measure of 
t h e  radiance of t he  gas ( t h e  glower radiance i s  negl ig ib le  i n  comparison t o  
t h a t  of t h e  gas) .  The glower s igna l  i s  s e l ec t ed  by a capacitor-coupled, 
80-kilocycle tuned ampl i f ie r  of high gain. With these  amplif iers ,  t he  detec- 
t i o n  system uses frequency separat ion t o  d i s t ingu i sh  between the  emitted and 
t ransmi t ted  l i g h t ,  although both a re  presented simultaneously t o  the  one detec- 
t o r ,  and sends the  r e s u l t i n g  s igna ls  t o  d i f f e r e n t  osci l loscope beams f o r  r e -  
cording . 

The p r inc ip l e  of temperature measurement used i n  the  IMRA technique corre-  
sponds t o  t h a t  of t h e  "Two-Path Method with Comparison Source" ( r e f .  8 ) .  A n  
e r r o r  ana lys i s  by Warshawsky ( r e f .  9 )  shows l a rge  e r r o r s  f o r  t he  l a t t e r  as t h e  
gas temperature r i s e s  above t h e  glower temperature. 
IMRA apparatus, which minimizes these  e r rors ,  cons is t s  of chopping t h e  glower 
r ad ia t ion  before it passes through the  t e s t  gas. This permits t he  emitted and 
t ransmi t ted  components of t he  r ad ia t ion  t o  be separated so t h a t  each may be am- 
p l i f i e d  independently by t h e  amount required t o  obta in  e a s i l y  measurable o s c i l -  
lograms. Without chopping, t he  l i g h t  from a source t h a t  i s  emit t ing more weak- 
l y  than the  gas would be swamped by the  gas emission. 

The c r u c i a l  f ea tu re  of t h e  

Cal ibra t ion  of F'yrometer 

The IMXA apparatus w a s  ca l ib ra t ed  by determining t h e  t ransmit tance of t he  
shock-tube window and the  absolute radiance of t h e  i n t e r n a l  secondary-standard 
source ( B  i n  f i g .  2 ) ,  which w a s  a tungsten-ribbon lamp. 

The window was found t o  pass 8 2  percent of 4.5-microns r ad ia t ion  f a l l i n g  
on it. This was t h e  wavelength used f o r  t h e  temperature measurements. A l -  
though the  center  of t he  asymmetric s t r e t ch ing  band of carbon dioxide i s  a t  
4.3 microns, t he  longer wavelength i s  much more desirable .  A t  4.5 microns, 
only t h e  hot  gas i n  the  shock tube absorbs l i g h t ,  while t h e  cool carbon dioxide 
i n  t h e  room and i n  the  shock-tube boundary l a y e r  i s  almost completely t r ans -  
parent.  

The i n t e r n a l  standard w a s  compared with a source t h a t  had been ca l ib ra t ed  

The r e l a t i v e  s e n s i t i v i t y  of t h e  o p t i c a l  
a t  t h e  Bureau of Standards. 
centimeter-2 micron-' a t  2 .2  microns. 
system and de tec tor  a t  4.5 and 2 .2  microns w a s  then determined by measuring the  

It was found t o  emit 2.47 w a t t s  steradian'' I 

. 
r ad ia t ion  

With 
radiance 
following 

from a blackbody source of known temperature a t  t h e  two wavelengths. 

t he  foregoing ca l ib ra t ion  f a c t o r s  a t  hand, t h e  absolute  s p e c t r a l  
N of t h e  hot  gas a t  4.5 microns i s  r ead i ly  determined from t h e  
formula: 

A, g 
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where 

amplitude of emission s igna l  ( a t  4.5 p), V vg 

amplitude of s igna l  from i n t e r n a l  standard source ( a t  2 .2  P ) ,  v 

R s e n s i t i v i t y  of t he  system at  4.5 p r e l a t i v e  t o  t h a t  a t  2.2 c1 

t ransmittance of shock-tube window at  4.5 1-1 t W 

absolute  spec t r a l  radiance of i n t e r n a l  standard a t  2.2 p NA, s 

This formula i s  v a l i d  provided the  amplif icat ion and the  s l i t  width a re  
the  same when both V and Vs a re  recorded. If they a re  not t h e  same, t h e  
appropriate  correct ion terms must be applied. 

g 

Shock Tube 

The shock tube w a s  of rectangular  cross section, 37 by 74 mill imeters.  
Two c i r c u l a r  sapphire windows, 28 mil l imeters  i n  diameter, were f l u s h  mounted 
opposite one another across  the  longer dimension. The midpoint of t he  windows 
was 3.94 meters from the  polyester  p l a s t i c  diaphragm t h a t  separated t h i s  driven 
sec t ion  of t he  shock tube from the  d r i v e r  section. The midpoint of t he  windows 
w a s  1 7 9  mill imeters from t h e  downstream end w a l l  of t he  driven section. This 
dis tance t o  the  end w a l l  could be reduced t o  27 o r  78 mil l imeters  by means of 
c l o s e - f i t t i n g  plugs. The diaphragms were pressure-burst  with helium. 

Timing, Pressure, and Recording Instrumentation 

Four th in- f i lm r e s i s t a n c e  gages were mounted upstream of t h e  windows, 
while one w a s  mounted a t  t he  same a x i a l  pos i t ion  as the  center l ine  of t he  win- 
dows. These gages marked t h e  time of inc ident  (and i n  some cases, r e f l ec t ed )  
shock a r r i v a l  a t  t he  f i v e  posi t ions,  r e l a t i v e  t o  the  f i r s t ,  or t r igger ,  posi- 
t i on .  The s igna ls  were displayed on one beam of a dual beam oscil loscope. The 
other  beam displayed the  output of a quartz pressure transducer.  This t r ans -  
ducer was a l s o  loca ted  a t  a pos i t ion  corresponding t o  the  center l ine  of t he  win- 
dows. A second dual-beam osci l loscope was t r i g g e r e d  t o  display absorption and 
emission l e v e l s  from t h e  gas as measured by the  IMRA apparatus. Timing pulses  
from a crys ta l -cont ro l led  secondary frequency standard were recorded on a l l  
four  osci l loscope beams f o r  each run. A c a l i b r a t i o n  s igna l  f o r  t he  emission 
l e v e l  in te r rupted  about 1100 times per second for i d e n t i f i c a t i o n  and a c a l i -  
b r a t i o n  s igna l  f o r  t h e  pressure were a l s o  recorded each time. 

Figure 3 shows the  osci l lograph records of i n f r a r e d  absorption and emis- 
s ion  for a s ingle  experiment. The important f ea tu re s  of th is  t y p i c a l  record 
are:  (1) the  la rge  changes of t ransmi t ted  and emitted l i g h t  upon passage of 
t h e  shock waves, ( 2 )  t h e  r e l a t i v e l y  noise-free signals;  and (3)  the  quick re -  
covery of t he  tuned ampl i f ie r  i n  t h e  absorption channel from the  r inging in-  
duced by s t ep  changes, which permits meaningful readings t o  be made s t a r t i n g  

5 



a t  about 50 microseconds a f t e r  ,-Before i n c i d e n t  s h o c k  
I b[;;i;d;ld;l passage of the  shock. 

It w i l l  be noted i n  f igu re  3 
t h a t  t he  gas behind the  r e f l e c t e d  
shock i n  t h i s  p a r t i c u l a r  run ab- 
sorbed almost a l l  of t he  rad i -  

many runs of t h i s  sor t ,  t he  por- 
t i o n  of t he  absorption t r a c e  
a f t e r  t he  r e f l e c t e d  shock w a s  
simultaneously displayed on an- 

A f t e r  

s h o c k  a t ion  from the  glower source. I n  

k-w A b s o r p t i o n  0 . 2 v r  

E m i s s i o n  g a s  other  osci l loscope a t  much higher 
E m i s s i o n  s t a n d a r d  gain, SO t h a t  t he  absorp t iv i ty  

could be accurately determined. 

'-100 p s e c  Test G a s  
F i g u r e  3. - T y p i c a l  i n f r a r e d  r a d i a t i o n  o s c i l l o g r a m .  

A commercially prepared 
argon-carbon dioxide mixture was 

3500 used without f u r t h e r  treatment. 
It analyzed 9.9 percent carbon 
dioxide by volume; the  r e s t  was 
argon. ," 3000 

A few t e s t s  were made 
a with t h i s  gas d i l u t e d  t o  6.7 per- 
- 2500 cent carbon dioxide i n  argon and 

with a commercially prepared 
S p e r c e n t  argon-carbon dioxide mixture t h a t  
;;; 2000 analyzed a t  1.1 percent carbon v 1 .  1 
n E 0 6 . 7  dioxide and the  balance, argon. 
2 1500 0 9 . 9  

w 

- 
a L 

L 
a 

RESULTS AND DISCUSSION 
1000 

1000 2000 3000 4000 
T e m p e r a t u r e  f r o m  i n c i d e n t  s h o c k  v e l o c i t y ,  O K  The r e s u l t s  of determina- 

F i g u r e  4. - C o m p a r i s o n  of m e a s u r e d  a n d  c a l c u -  t i o n s  of gas temperatures behind 
l a t e d  t e m p e r a t u r e s  b e h i n d  i n c i d e n t  s h o c k s  i n  incident  shocks a re  presented i n  
c a r b o n  d i o x i d e - a r g o n .  f igu re  4, where they a re  compared 

with temperatures calculated by 
simple shock theory from measured shock ve loc i t i e s .  The IMRA temperatures were 

, F  
a c t u a l l y  measured a t  several  10-microsecond i n t e r v a l s  f o r  each experiment, 
s t a r t i n g  a t  about 50-microsecond laboratory time when the  s igna ls  f i r s t  became 
readable. Each point  i n  f igure  4 was obtained by extrapolat ing such data  back 9 

t o  time zero, the  i n s t a n t  when the  shock passed the  center  of the  windows. 
This w a s  done t o  eliminate e f f e c t s  of shock ve loc i ty  a t tenuat ion  on the  temper- 
a ture .  

The agreement i s  good, and as expected, does not seem t o  be a f fec ted  by 
the  carbon dioxide concentration over t he  range studied. Despite t h i s  general  
agreement between measured and calculated incident  temperatures, there  i s  

6 
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4000- nevertheless  a good dea l  of s c a t t e r  
- evident i n  f igu re  4. Par t  of t h i s  

s c a t t e r  i s  t raceable  t o  contamina- 
t i o n  of t h e  shock-tube windows, bu t  - Y 

0 

- most of it i s  due t o  a d r i f t i n g  type 
- of i n s t a b i l i t y  of t h e  i n f r a r e d  de- 

a 
I 

m 3000- 

w 

t ec to r .  From run t o  run, t h i s  in -  
s t a b i l i t y  produced unce r t a in t i e s  a s  

t i o n  (1) shows t h a t  t h i s  e r r o r  re -  
s u l t s  i n  an uncertainty of only about 

- 
I 
=I 

m 
L 
a, 

l a rge  as 10 percent i n  N A,g' Equa- c 

M i l l i m e t e r s  
a f t e r  

r e f l e c t i o n  

n 
E 
m 
I- 

a 27 30° K a t  temperatures near 1000° K, 
13 78 but  t h e  e r r o r  grows t o  near ly  300° K 
0 179 a t  temperatures near 4000° K. 

1 l 1 1 1 1 l 1 1 1 1  

T e m p e r a t u r e  f r o m  i n c i d e n t  s h o c k  v e l o c i t y ,  O K  
2000 3000 4000 

Inasmuch a s  t h e  main purpose of 
t h e  work w a s  t o  measure r e f l e c t e d  
shock temperatures at levels above 
2000' K, it was des i rab le  t o  reduce 
t h e  expected s c a t t e r  i n  t h e  r e s u l t s  
a s  much as possible .  This was done 

F i g u r e  5. - C o m p a r i s o n  o f  m e a s u r e d  a n d  c a l c u -  
l a t e d  t e m p e r a t u r e s  b e h i n d  r e f l e c t e d  s h o c k s  i n  
c a r b o n  d i o x i d e - a r g o n .  

by using t h e  inc ident  shock wave as an i n t e r n a l  standard f o r  each run. The 
temperature ca lcu la ted  from the  measured shock ve loc i ty  a t  t he  window posi t ion,  
and t h e  measured emiss iv i ty  of t he  gas behind t h e  inc ident  wave, were both as- 
sumed t o  be cor rec t .  The value of s p e c t r a l  radiance N required t o  s a t i s f y  
equation (1) was then calculated.  
( i nc iden t  shock) and 
a lumped instrument fac tor ,  ( l / R ) (  l / t w ) N h ,  s. 

measured vol tages  i n t o  a s e r i e s  of r e f l e c t e d  shock temperatures, s t a r t i n g  a t  
about 50 microseconds behind t h e  shock and determined a t  approximately 
10-microsecond in t e rva l s .  These data were extrapolated t o  time zero, t h e  in -  
s t a n t  t h e  r e f l e c t e d  shock passed t h e  center  of t h e  windows. The r e s u l t i n g  
measured temperatures a re  p lo t t ed  a s  ord ina tes  i n  f igu re  5; t he  absc issas  a re  
the  corresponding r e f l e c t e d  temperatures graphica l ly  ( r e f .  10) ca lcu la ted  from 
the  ve loc i ty  of t h e  inc ident  shock a s  it passed the  windows. 

A, g 
vg This value, and t h e  measured vol tages  

V,, were i n s e r t e d  i n  equation ( 2 )  and used t o  ca l cu la t e  

I n  each run, then, t h i s  ind iv idua l ly  determined f a c t o r  was used t o  convert 

Clearly, t h i s  means of obtaining ca lcu la ted  r e f l e c t e d  shock temperatures 
f o r  comparison with measured values i s  r a t h e r  a rb i t r a ry .  I t s  most obvious 
shortcoming i s  t h a t  it does not allow f o r  t h e  a t tenuat ion  of t he  incident  wave. 
However, it i s  important t o  see how we l l  t h e  temperatures ca lcu la ted  i n  th i s  
simple way agree with t h e  measured values. Figure 5 shows t h a t  they agree 
qui te  well, although the re  a re  t rends  i n  t h e  data. The poin ts  obtained with 
t h e  end w a l l  a t  i t s  most remote posi t ion,  179  mil l imeters  from t h e  windows, 
tend  t o  be high, and those obtained with t h e  end w a l l  78 mil l imeters  away tend  
t o  be low. This behavior i s  not incons is ten t  with t h a t  noted i n  reference 11, 
which reported t h a t  t h e  r e f l e c t e d  shock pressure behaved as i f  t he  shock decel-  
e r a t ed  and then acce lera ted  as it receded from t h e  end w a l l .  Despite these  
t rends,  t he  agreement between measured and simply-calculated temperatures i s  
very gra t i fy ing .  O f  t h e  27 measuremer,ts shown i n  f igu re  5, 1 4  a re  within 
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looo K of t he  l i ne ,  and only 4 miss it by more than 200° K. 
bel ieved t h a t  deviat ions l a r g e r  than 100' K are  r e a l  and t h a t  they r e f l e c t  ac- 
t u a l  departures of t h e  shocks from i d e a l  one-dimensional behavior. 

It is, however, 

The two extreme points  i n  f igure  5 represent  data  from oscil loscope records 
i n  which the  r e f l e c t e d  port ions could be accurately measured but t he  incident  
port ions could not. These two poin ts  were therefore  ca lcu la ted  with the  o r i g i -  
n a l  c a l i b r a t i o n  f a c t o r s  r a t h e r  than an ind iv idua l ly  determined f a c t o r  such as 
was used f o r  each other  point.  They a r e  included t o  extend the  temperature 
range of the  r e f l e c t e d  da ta  and t o  ind ica te  t h a t  the  individual  c a l i b r a t i o n  cor- 
rec t ions  were usual ly  s m a l l .  

An example of the  d e t a i l  which can be obtained by the  IMRA method i s  given 
i n  f igu re  6, where the  temperature h i s t o r y  of a shock i s  followed a t  10- t o  20- 
microsecond i n t e r v a l s  f o r  700 microseconds a f t e r  i t s  passage. Measurement of 
t he  incident  shock wave ve loc i ty  U a t  four  successive places  j u s t  before ar- 
r i v a l  a t  the  t e s t  window showed the  ve loc i ty  t o  be a t tenuat ing  a t  t he  r a t e  of 
1.5~10-~ (mil l imeters  per microsecond) per  mill imeter.  
dU/U = 1.5~10-~ f o r  a 1-microsecond in t e rva l .  
r e l a t i o n  
t h e  passage of t h e  incident  shock, t he  temperature would be expected t o  r i s e  
from 1310' K (ca lcu la ted  from shock ve loc i ty )  t o  about 1388' K and the  pres- 
sure P from 1 . 7 6  t o  about 1 . 8 7  atmospheres. The IMRA measurements showed t h i s  
r i s e  approximately, as indicated by t h e i r  conformity t o  the  incident  theory l i n e  
i n  f igure  6. 
a l s o  shows good agreement with the  predict ion.  

Therefore, 
Strong shock theory predic t s  the  

2dU/U = dT/T = dP/P. Therefore, i n  t he  f i r s t  200 microseconds a f t e r  

The pressure rose t o  1.90 atmospheres, or dP/P = 3 . 8 ~ 1 0 ' ~ ;  th i s  

Other observers ( r e f .  2 )  have noted a r i s e  i n  pressure behind re f lec ted  
shocks. This pressure r i s e ,  converted i n t o  an i sen t ropic  temperature change 

by the  equation T = To(P/Po) [(r-l)/ylJ where y i s  the  r a t i o  of spec i f i c  
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h e a t s  and To 
shock ve loc i ty ,  corresponds very w e l l  w i t h  t h e  i n f r a r e d  pyrometer r e s u l t s  of 
f i g u r e  6. 

i s  t h e  r e f l e c t e d  shock temperature ca l cu la t ed  from inc iden t  

A second example of d e t a i l e d  ana lys i s  i s  presented i n  f igu re  7. Here t h e  
temperature following the passage of t h e  r e f l e c t e d  shock tends t o  r ise,  because 
of i s e n t r o p i c  compression, and tends t o  decrease because of d i s soc ia t ion  accord- 
i ng  t o  t h e  equation 

1 COz + CO + z 02, AH = 65.8 k i l o c a l o r i e s  

The r eac t ion  has atomic oxygen as an i n i t i a l  product. However, t h e  recombina- 
t i o n  ra te  of atomic oxygen i s  so high a t  t hese  conditions t h a t  t h i s  s t e p  i n  t h e  
r eac t ion  mechanism can be ignored. The following were used t o  m a k e  t h e o r e t i c a l  
temperature calculat ions:  
t h e  d i s s o c i a t i o n  r a t e  of carbon dioxide, ca l cu la t ed  f o r  3220' K from t h e  expres- 
s ion  given i n  reference 12, and f o r  t h e  subsequent temperatures a f t e r  t h e  re- 
f l e c t e d  shock-wave passage, ( 2 )  the i s e n t r o p i c  temperature correct ions from the 
measured pressures,  and (3 )  neg l ig ib l e  back r eac t ion  of t h e  carbon monoxide and 
oxygen t o  form carbon dioxide. A s  w i t h  the simpler case of f i g u r e  6, t h e  agree- 
ment of theory and r e s u l t s  i s  g ra t i fy ing .  I n  th i s  case, f i g u r e  7, the attenua- 
t i o n  comparisons behind t h e  inc iden t  shock are 
dP/P = 4 . 3 ~ 1 0 - ~ ,  and dT/T = 3 . 4 ~ 1 0 ' ~ .  

(1) 2. 9x107 cubic centimeters mole-l secondm1 f o r  

dU/U = 2 . 6 ~ 1 0 - ~ ,  

9 



CONCLUSIONS 
I 

This study of gas temperatures measured i n  a shock tube by i n f r a r e d  mono- 
chromatic r a d i a t i o n  pyrometry has led t o  t h e  following conclusions: 

1. I n f r a r e d  pyrometry of a carbon dioxide-argon gas mixture y ie lded  i n c i -  
dent shock temperatures i n  agreement with those ca l cu la t ed  from t h e  inc iden t  
shock speed by common shock theory, from llOOo to 3300' K. 

2. A comparison of r e f l e c t e d  shock temperatures measured 27, 78, and 
179 mill imeters a f t e r  r e f l e c t i o n  with temperatures ca l cu la t ed  from one- 
dimensional shock theory shows t h e  l a t t e r  a r e  general ly  good f o r  sho r t  d i s -  
tances  a f te r  r e f l ec t ion .  

3. Attenuation of t h e  speed of an inc iden t  shock wave w a s  accompanied by 
changes i n  the  gas pressure and temperature i n  t h e  per iod following t h e  passage 
of t h e  shock. The r e l a t i o n s  between these  changes were i n  general  agreement 
with strong shock theory. 

4. The change i n  gas temperature wi th  time a f te r  a r e f l e c t e d  shock w a s  
adequately calculated from t h e  d i s soc ia t ion  ra te  of carbon dioxide and t h e  pres- 
sure h i s t o r y  of t h e  gas mixture. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 4, 1965. 
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